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Let fE C[a,b] and denote by nn the class of all algebraic polynomials
of degree ~n. Define En(f)=minpE1t.llf-pll and E~(f)=min{llf-pll:

pEnn and p(k)(O) = O} where Ilhll = maxa",x",b Ih(x)1 for hE C [a,b]' Hasson
in [1] proved that, for k ~ 1,

if f E qa,b] and j<k)(O) =p 0 where a < 0 < b, or if f E q~,b] and f(k)(O) =p 0
where ab = O. Also, in that paper Hasson conjectured that iff E C[~ I, I] and
f' does not exist at some interior point of [ -1, 1], then

-1' E~(f)
1m -(f) < 00.

n---.oo En
(1)

In this paper, we construct a counterexample to show this conjecture is
false.

Define f(x) = I,;;o~ 1 (llan ) cos an 8 with x = cos 8, 8 E [0, n] where
{an};;o~ 1 are all odd positive integers satisfying

with each rna positive integer and

00 1 1
L -~k"+i'

j~n+ I a j an

It is clear thatf(x)EC[_I,I] and

n+m-In (4rj + 1)=4p+ 1
j=n
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(2)

(3 )
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for some positive integer p and En(f) = L':;>n l/aj (see [3]). Furthermore,

00 1 1
EaJf)= I -~k+l'

j~n+lai an

Next we show f'(x) does not exist at x = cos(n/2ad. Let hm = n/4am -.. O.
Then, for m ):: 2,

since ~jE (n/2, (3/4)n) by the mean value theorem applied to the first
summation.

This showsf'(x) does not exist at x=cos(n/2al)E(-1, 1). But

where IIPn- III = En(f), IIP~ - fll = E~(f), and bLn) is the coefficient of x k

in Pn. We can assume bLan ) does not go to zero; otherwise, we ca~ take
f(x) + x k instead of f(x).

By Theorem 2.5 of [1], E~(Xk))::Nk/nk with Nk independent of n. Thus,

-1' E~(f) -1' E~Jf) -1' (bLan»)(Nk/a~)
1m --):: 1m --):: 1m k+1 = 00.

n~ 00 En(f) n~ 00 EanU ) n~ 00 l/an

Remark. We can show even more: For any sequence En with
limn ~ 00 En = 00, there exists a function! E C[-I, I] such thatf'(x) does not
exist at some point in (-1, 1), and

To show this we only have to alter (3) to Lj~n+11/aJ~1/Bna~+1 in
constructing the above function f Also this example with little change can
be applied to C[a,b] with OE [a, b].
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Since the above conjecture is not true, one is led to inquire about the
lim inf in place of the lim sup in quotient (1). This remains open. In [2J
M. Hasson and O. Shisha proved the following theorem:

THEOREM A. Let a < 0 < b, let k> 0 be an integer, let 0 < 0( < 1, and
suppose for some positive A k, E~(f)/En(f)?;; Akn rx holds. Then f(k) exists in
(a, b) and on each [ai, b'J with a < a' < b' < b, f(k) satisfies a Lipschitz
condition of order 0(.

This theorem implies that iff(k)(x) does not exist at some point in (a, b),
then for any (j > 0

1· E~(f) - 0
1m b- .

n~ 00 En(f)n
(4)

For fEe [a,b] and ab = 0, using similar techniques together with the
estimate of E~(Xk), E~(xk)~Nk/n2k of [IJ, we can prove

THEOREM B. Let ab = 0, let k> 0 be an integer, let 0 < 0( < 1, and
suppose form some positive A k, E~(f)/En(f)?;; Akn rx holds. Then f(2k) exists
in (a, b) and on each [ai, b'J with a < a' < b' < b, f(2k) satisfies a Lipschitz
condition of order IX.

This also implies (4) for any (j > 0 if f(2k)(x) does not exist at some point
in (a, b).for ab = O.
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